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Abstract 

The theory of Market Microstructure Invariance proposed by Kyle and Obizhaeva (2010) is 

presented and tested on spread data for bond futures. The data used are transformations from 

over 150,000 observations of futures on German government debt securities (Schatz and Bund) 

and 10-year US treasury notes. To account for the possible presence of long memory processes, 

we perform a GPH-test that displays no long memory processes in the data. Our findings 

support the theory of Market Microstructure Invariance, however the results differ between 

futures.  
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INTRODUCTION  

 

When acting in the financial markets, a trader can choose to submit limit orders 

or pay the cost for immediate trading and cross the bid-ask spread. The price of 

immediate trading – the size of the bid-ask spread - signifies the cost for market 

participants to constantly be guaranteed a counterpart for trades. Often used as a 

measure of liquidity, the bid-ask spread is of utter importance for traders´ 

strategies concerning market or limit orders since it reflects a transaction cost 

(Harris and Hasbrouck, 1996). Hence, understanding the dynamics of the bid-ask 

spread is essential for everyone participating in the financial markets. 

The subject of the components and the predictability of the bid-ask spread have 

been thoroughly addressed within the fields of market microstructure and game 

theory. Foucault (1999) and Foucault et al. (2005) use game-theoretical dynamic 

models to advocate the bid-ask spread as fundamental for trading strategies. 

Within the framework of market microstructure, the models employ inventory 

liquidation, information asymmetry or transaction costs to explain the spread. 

Stoll (1989), Huang and Stoll (1997), and Bollen, Smith and Whaley (2004) 

investigates the bid-ask spread by computing inventory holding costs, i.e. the 

cost for the market maker to supply liquidity. Information asymmetry, the 

approach that the bid-ask spread is a product of differences in the levels of 

information between the specialist and the customer, was first introduced by 

Bagehot (1971) and further developed by Glosten and Milgrom (1985). In the 

model, the uninformed market maker, knowing that an order might be 

information-motivated, revises his or her expectations for the asset when the 

order is received. The expectations are then incorporated by the market maker 

in the quoted bid and ask prices. 

Roll (1984), being the first, derived an estimator to estimate the bid-ask spread 

in the equity market. Roll acknowledged that the quoted spread not always 

corresponds to the effective spread. Thus, the quoted spread sometimes 

exaggerates the real transaction costs faced by traders. Under the prerequisite 

that the market is efficient, Roll uses the relationship between transaction price 
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changes to estimate the bid-ask spread indirectly. This approach has later been 

extended by Stoll (1989) and George et al. (1991) with more complex estimators. 

However, these estimators have received criticism for having problem 

estimating quotes and price change covariance (Chen and Blenman, 2003). An 

extended model of serial covariance bid-ask spreads, which circumvented the 

shortcomings of Stoll (1989), was introduced in 2003 by Chen and Blenman. 

A limitation to some of these aforementioned models is that they make explicit 

assumptions concerning the dynamics of the market. Either by addressing 

inventory costs or information asymmetry as more determinative. Common for 

prior models and estimators is also that they do not attend to the reactions on 

the bid-ask spread by trades and how the impact is correlated with the volume of 

the trade. 

In 2010, Kyle and Obizhaeva approached the subject of market microstructure 

and the bid-ask spread in a somewhat new manner and introduced a theory of 

Market Microstructure Invariance. The theory, consistent with traditional 

theories using information asymmetry and inventory holding costs, build on the 

intuition that stocks with high and low levels of trading activity differ in the rate 

at which the time clock generating trading activity ticks. The predictions of the 

theory involve market impact, order size changes and effects on the bid-ask 

spread caused by changes in trading activity. It predicts that a one percent 

increase in trading activity decreases the bid-ask spread by one third of one 

percent. The theory was tested on portfolio transition data and the results 

corresponded to a large extent with the theoretical values.  

In addition to the effects on the bid-ask spread by changes in trading activity, the 

behaviour of the bid-ask spread is also to some extent explained by Groß-

Klußmann and Hautsch (2011). They found long-range dependency in the bid-

ask spread, by applying a Geweke and Porter-Hudak test (1983), when 

developing a model for forecasting.  
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The presence of a long memory effect is not unusual in financial market data. 

During the last twenty years, extensive research has been conducted on long 

memory modelling within the fields of macro and financial studies (Bhardwaj 

and Swanson, 2006).  The areas investigated include volatility data (Ding and 

Granger (1996) and Andersen et al. (2003)), traded volumes (Lux and Kaizoji, 

2007) and trade durations Deo et al. (2010). The incidence of a long memory 

effect might cause problems with specification if not taken into consideration 

when modelling.  

Our study contributes to the existing literature by testing the theory of Market 

Microstructure Invariance (Kyle, Obizhaeva, 2010) on market data for bond 

futures to examine if the findings from the stock market regarding the bid-ask 

spread are applicable on the derivatives market. In contrast to Kyle and 

Obizhaeva who used time periods of one day, we have examined intraday trading 

by employing time periods of 30 minutes. To account for the findings of Groß-

Klußmann and Hautsch (2011) we examine our data for long-memory 

dependence.  

We find that the presence of long memory dependence should most likely be 

discarded, in contrast to the findings of Groß-Klußmann and Hautsch (2011). 

Further, we show that a one percent increase in trading activity causes the bid-

ask spread to decrease closely to one third of one percent. High adjusted R-

squared values indicate that the estimated model fits the data well.  

The remainder of the paper is organised as follows; chapter 2 describes the 

theory of Market Microstructure Invariance, chapter 3 explains long memory, in 

chapter 4 we present our data, chapter 5 derives our empirical test models, 

chapter 6 presents our results and chapter 7 concludes the paper and some last 

concerns.  
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MARKET MICROSTRUCTURE INVARIANCE MODEL 

 

Kyle and Obizhaeva (2010) have developed a model to explain the dynamics of 

trading. They consider the difference in activity between markets as a product of 

difference in time speed. As an illustrative example they give chess. The game of 

chess has certain rules and tactics; these do not change if the game is played with 

a clock. In the same sense the rules of trading does not change if the time speed 

is increased. The amount of “bets” (trades) increase but the fundamentals behind 

trading does not change. 

The order-flow, which consists of “bets”, follows a Poisson process. Kyle and 

Obizhaeva argue that the risk transferred by traded shares is more meaningful 

than the traded volume; hence the traded risk is the measure used in the model. 

“Bet”-risk1 is defined as bet value (share price times share quantity) times the 

volatility (standard deviations per day). Further “trading activity”2 is defined as 

the arrival rate of bets times the value of bets and the volatility.  

Kyle and Obizhaeva apply two irrelevance principles; “Modigliani-Miller 

irrelevance” and “Time-clock irrelevance”.  The “Modigliani-Miller irrelevance” 

means that bet risk and bet arrival rate are unaffected by splits etc. In the same 

manner the “Time-clock irrelevance” implies that changing the time-speed by 

speeding up or slowing down the time does not change the rules of the trading 

game. By changing the time-speed the trading activity increases by an increase in 

the number of bets and their risk (by increasing volatility).   

The theoretical aspects of the irrelevancies do not imply that all securities act as 

one. To be able to test this on market data, assumptions has to be applied. The 

assumptions allows for generalisations between different securities in different 

markets. This method enables for comparison of behaviour as a result of 

difference in time-speed. Kyle and Obizhaeva make the following assumptions: 

                                                                    

1 B=P*Q*    

2 W=*P*Q*   
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 Trading Game Invariance: The probability of the trading game invariant 

(defined as ration of bet size to the square root of bet arrival rate) is the 

same across stocks and across time for the same stock. 

 

 Market Impact Invariance: For all stocks, the same constant fraction  of 

price volatility results from the linear price impact of bets. 

 

 Bid-Ask Spread Invariance: For all stocks, the expected bid-ask spread 

cost of a bet is the same fraction  of market impact cost. 

Kyle and Obizhaeva name these assumptions “market microstructure 

invariance” and the variables “market microstructure invariants”. These ideas 

lead to the following implications: 

 Trading Game Invariance implies that if trading activity is observed to 

increase by one percent, then the increase in trading activity resulted 

from an increase in the arrival rate of bets by two-thirds of one percent 

and an increase in bet size of one-third of one percent. Trading game 

invariance implies that the shape of the distribution of bet size does not 

change as the level of trading activity changes. 

 

 Market Impact Invariance together with trading game invariance implies 

that increasing trading activity by one percent increases the market 

impact cost of trading one percent of average daily volume by one-third of 

one percent, when trading costs are measured in basis points per dollar 

traded, holding volatility constant. 

 

 Bid-ask Spread Invariance together with Trading Game Invariance implies 

that increasing trading activity by one percent decreases the bid-ask 

spread by one third of one percent, when costs are measured in basis 

points per dollar traded, holding volatility constant. 
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This results in an increase in trading activity when the time clock is moving 

faster. The activity increases because the arrival rate of bets and the variance 

increases.  The variance increases proportionally with the arrival rate of bets. 

Since price volatility is the standard deviation of returns (square root of 

variance), volatility increases half as fast as variance. This means that as trading 

activity increases, the arrival rate of bets increases twice as fast as volatility.3 

Define the time-speed as H and benchmark it at 1, by speeding up the time H < 1 

and by slowing down H > 1. With a lower H trading activity increases for two 

reasons; the number of bets (proportionately with 1/H) and the volatility 

increases (1/H1/2, since volatility is the square root of variance). Therefore the 

trading activity increases proportionately with 1/H3/2.  

Since the theory does not make any assumptions about how market participants 

act (except that their behaviour is the same for all markets), the model is not in 

conflict with adverse selection or inventory models.  

 

 

MATHEMATICS TO SPREAD PREDICTIONS 

 

Bet risk ( ) and trading activity ( ) are defined as; 

       (1) 



V    E Q
~









      (2) 

      (3) 

                                                                    

3 If the volatility increases by one percent (1+0.01), the variance will increase by (1+0.01)2. 

Consider that the volatility increases by one percent in 2 periods, then the variance will have the 

same effect after one period, in other words increases twice as fast. 



B
~



W



B
~

Q
~

 P 



W V P 
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where  is shares per bet, P is price,  is bet arrival rate,  is volatility and V is 

volume.  The time length of each period is one day of trading. 

Algebraically we can express the effects of Modigliani-Miller irrelevance and 

time-clock irrelevance, where;  

 = Bet arrival rate 

 = Volatility 

 = Split factor 

 = Debt financed proportionate dividend 

H = Time-clock speed (benchmarked at 1) 

* = Benchmark values 

       (4) 

       (5) 

 

      (6) 

     (7) 

The Modigliani-Miller irrelevant transformation  and  do not affect the bet risk 

or the trading activity. However, the time-clock changes do. 

       (8) 

      (9) 

H is a variable that we cannot observe, but we can easily solve H from W. 



Q
~



 
1

H
 *



Q
~

 Q
~ *



P 
(1)


 P*



 
1

H1/ 2  (1)
 *



B
~

 B
~ *

H1/ 2



W W * H3/ 2
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       (10) 

By using the expression for H we can state the changes in bet risk and bet arrival 

rate as a function of trading activity. 

      (11) 

      (12) 

This implies that as trading activity increases, both the arrival rate of bets and 

the bet risk increases.  

Kyle and Obizhaeva define  as the “trading game invariant”, which is the ratio of 

bet size to the square root of the bet arrival rate: 

       (13) 

By using the product of equations 5, 6 and 7 divided by the square root of 

equation 3 we express the “trading game invariant”. The Modigliani-Miller 

irrelevance and time clock irrelevance coefficients all cancel out. This gives us: 

     (14) 

Kyle and Obizhaeva refer to  as the trading game invariant. The intuition is that 

the invariant is not affected by irrelevant alterations, such as the Modigliani 

Miller and time clock transformations. Kyle and Obizhaevas model states that the 

risk of a bet can be measured invariant to the time speed. 

, , and  have the same shape, but different scaling. 

     (15) 



H 
W

W *











2 / 3



B
~

 B
~ *


W

W *











1/ 3



  * 
W

W *











2 / 3



I
~



I
~


B
~

1/ 2



I
~


Q
~

 P 

1/ 2

Q
~ *

 P* *

 *1/ 2



I
~



Q
~



B
~



I
~

E I
~









Q
~

E Q
~









B
~

E B
~







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By using equation 1 and 3 we get the following. 

      (16) 

Solving for  and  by using equation 16 and 13. 

      (17) 

     (18) 

These equations state that changes in trading activity leads to bet frequency 

increasing twice as fast as bet risk. The difference to equation 11 and 12 is that 

the trading game invariant is used in contrast to benchmark levels. 

 

 

TRANSACTION COSTS 

 

Kyle and Obizhaeva assume that the costs of trading consist of two parts, 

permanent linear price impact and transitory bid-ask spread. CL denotes the 

price impact cost, CK the bid-ask spread cost and  is the price impact of trading 

one share (measured in units of dollar per share squared) (Kyle, 1985). 

Assuming that the order is executed by “walking the book”4, the expression is 

multiplied by one half. The expected price impact cost is a linear slope: 

      (19) 

                                                                    

4 As the price impact is a linear function, for every transaction we move further along the price 

impact line. To calculate the transaction cost, the total market impact is divided by two and 

applied for all transactions. 



W    E B
~










E B
~










  E I
~








2 / 3

W 2 / 3



E B
~







 E I

~







2 / 3

W 1/ 3



CL 
1

2
   E Q

~ 2






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 is the bid ask spread for one share in dollars per share. 

      (20) 

In line with the Modigliani-Miller irrelevance and time clock irrelevance it is 

assumed that splits, leverage dividends or time speed do not affect the cost. A 

stock split has proportionate effects on the number of shares traded, while 

leverage and time clock changes do not.  

       (21) 

       (22) 

To make price impact and its cost endogenous, the price impact is assumed to 

lead to a fraction 2 of price variance. This enables the price volatility to be 

explained by both announcement effects and trading effects. Daily price impact 

can therefore be expressed as product of price variance and 2, or the arrival 

rate of bets times its price impact. 

    (23) 

Rewriting the equation for  

      (24) 

By using equation 24 in 19 and the definition of  in 1, we get the following. 

     (25) 

The equation expresses a linear relationship for market impact cost of bet risk 

and bet arrival rate. However the linear approach is the most commonly used. 

(Chen, Stanzl and Watanabe, 2002) 



CK   E Q
~










  * /2



 * /



 2  2  P2    2  E Q
~ 2










 
   P

1/ 2  E Q
~ 2








1/ 2



CL 
1

2
 

E B
~ 2








1/ 2

1/ 2
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Kyle and Obizhaeva make the following assumption to get a stable endogenous 

relationship between the bid-ask spread and the expected spread costs:  

 The expected bid-ask spread cost of a bet is a constant fraction  of the 

expected market impact cost of a bet. 

       (26) 

By using equations 26 and 20 we get the following expression for the bid-ask 

spread. 

       (27) 

 

 

TIME CLOCK IRRELEVANCE AND TRADING COSTS 

 

The expression for the “trading game invariant” (13) can be combined with 

equation 25 to express the market impact cost as a function of moments of the 

invariant. 

     (28) 

The expected market impact cost is not defined by trading activity W. This is in 

line with the idea that the speed of the trading game does not change the 

“fundamentals” of the game. 

The market impact of trading one entire day’s expected trading volume V, 

expressed as a fraction of one day’s price volatility P is given by: 

     (29) 



CK   CL



 
 CL

E Q
~










CL 
1

2
  E I

~2







1/ 2



 V

  P
 

E Q
~








E Q2 
1/ 2  

1/ 2
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3/2
~

2/1
2~

3/1

2

1



























IE

IE

W
P






This can also be expressed by using moments of the invariant and trading 

activity by using equation 15 and 17. 

     (30) 

With the expressions for bet risk (1) and bid-ask spread (27), the bid-ask spread 

as a fraction of one day’s dollar volatility (P) can be expressed: 

      (31) 

Plugging in equation 28 and 18, we get an expression that only depends on 

moments of the trading game invariant and trading activity. 

   (32) 

 

Equation 30 and 32 states that a bet representing one percent of daily trading 

(holding price and volatility constant) leads to one third of a percent increase in 

impact cost and one-third of a percent decrease in spread cost.  

To further explain the concept, equation 32 can be transformed: 

         

   (33) 

 

 

  



 V

  P
 

E I
~








2 / 3

E I
~ 2








1/ 2 W
1/ 3





  P

 CL

E B
~












  P


1

2
   

E I
~ 2








1/ 2

E I
~








2 / 3 W
1/ 3
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The equation above express the spread as a fraction of price volatility times one 

divided by the trading activity raised to minus one third. Since the right hand 

side only depends on invariants, a positive change in trading activity must lead 

to a decrease in the spread as a fraction of price volatility. 

If trading activity increases by one percent, the number of bets represented by 

one day’s trading volume increases by two-thirds of one percent according to 

equation 16. The impact cost will increase by one-third of one percent (equation 

30). The bid-ask spread is reduced by one-third of one percent because the 

spread is scaled by volatility that increases by one-third of one percent (equation 

32). 

 

 

AS AN EMPIRICAL HYPOTHESIS 

 

The above theoretical results do not assume that the invariant distribution is the 

same for different stocks or different time periods. Therefore they are not 

empirically testable. To be able to investigate the findings Kyle and Obizhaeva 

make testable assumptions about the properties of different stocks: 

 Trading Game Invariance: For all stocks, the distribution of the trading 

game invariant  is the same. 

 Market Impact Invariance: For all stocks, the linear price impact of bets 

explains a fraction  of price volatility which is constant across stocks. 

 Bid-Ask Spread Invariance: For all stocks, the bid-ask spread is the same 

fraction  of the expected market impact cost of a bet. 

These hypotheses are referred to as the “Market Microstructure Invariance”. The 

basic idea which forms the theory is; for all stocks the trading game is the same, 

except for some irrelevant transformations (Modigliani-Miller and time-clock 

transformations).  
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The trading game invariance and the market impact invariance imply that the 

expected market impact cost of a bet is the same for all stocks. Paired with the 

bid-ask spread invariance, it implies that the expected bid-ask spread cost of a 

bet is the same for all stocks. Kyle and Obizhaeva test this by investigating the 

effects of trading a given fraction of average daily volume.  

The theory states that if two stocks have the same level of trading activity, the 

impact costs and spread costs of trading the same percentage will be the same. If 

the trading activity differ so will the transaction costs as shown in equation 30 

and 32.  

Equation 33 implies that the bid-ask spread, scaled by volatility and price, 

satisfies: 





  P


*

 *  P*

W

W *











1/ 3

     (34) 

An increase in trading activity decreases the spread scaled by volatility and price 

one-third as fast. 

Kyle and Obizhaeva performed a study on portfolio transition5 data, which 

consisted of over 400,000 stock-trades on NYSE6 and NASDAQ. The results of the 

study are that the spread decreases somewhat faster then what the theory 

predicts when trading activity increases. Their estimate of the power, which the 

trading activity is raised to, is -0.39 with a standard error of 0.025. However, 

estimated values for each series varies from -0.19 to -0.46.7 

 

                                                                    

5 Portfolio transition: When a portfolio is sold and bought again for the purpose of moving it 

between two asset managers for example.  

6 New York Stock Exchange 

7 For further reading please see Kyle and Obizhaeva, 2010 
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LONG MEMORY 

 

Groß-Klußmann and Hautsch (2011) forecasted bid-ask spreads by using an 

autoregressive conditional Poisson (ACP) model with a long memory extension. 

The results showed that their model outperformed other models in forecasting, 

and had the possibility, when implemented in a simple algorithmic trading 

model, to lower transaction costs by up to 13%.  

For the purpose of this paper, the relevant part is that they showed that there are 

low frequencies within the bid-ask spread time-series that caused a long 

memory effect.  

Long memory is defined as dependence between observations widely separated 

in time.  In contrast “short-memory” processes, for example modelled with 

ARMA-processes, decays rapidly as the lags increases. One way to model long 

memory is by using an ARFIMA model (AutoRegressive Fractionally Integrated 

Moving Average, (p,d,q)). It allows for differentiation of non-integer values. 

Diebold and Rudebusch (1989) showed that allowing for non-integer values of d 

provides “parsimonious yet flexible modelling of low-frequency variation”. 

(Diebold and Rudebusch, 1989) 

Geweke and Porter-Hudak (1983) proposed a two-step procedure to estimate 

long memory dependence. Diebold and Rudebusch (1989) argue that it has more 

benefits than competing models such as Maximum Likelihood, due to the risk of 

misspecification.  

An ARFIMA model is the same as ARIMA with the difference of allowing for non-

integer values of d. To model it, the first step is to estimate the order of 

integration, secondly the series is transformed and the ARMA process is fitted to 

the new series.  

Lets denote Xt  = (1 - L) Yt, an ARIMA process can then be expressed as 



(L)Xt (L)t       (35) 
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To allow for fractional differentiation we add a lag operator raised to



d
^

. 



(1L)d
^

Xt 
1(L)(L)t  ut     (36) 

As 



d
^

 equals 1 + d of the Y series, a value of d equal to zero corresponds to a 

unit root in Yt.  

 

 

FIRST STEP – ESTIMATE 



d
^

 

 

The estimation of 



d
^

 relies on the spectral density8 of Xt. Through a spectral 

regression the estimate can be obtained. (Groß-Klußmann and Hautsch, 2011) 



ln I( j)  0 1 ln 4sin2( j /2)  j , j = 1, 2,…,K (37) 

The periodogram I(j) is given by the fourier frequencies of Xt. (Shumway and 

Stoffer, 2006) The estimate of 1 represents 



d
^

. (Groß-Klußmann and Hautsch, 

2011) 

The variance of 1 is given by the OLS estimator, and the theoretical variance of  

is equal to π2/6. By imposing the theoretical variance the efficiency increases. 

(Diebold and Rudebusch, 1989) 

The 1 parameter estimates the order of integration for the series, where the 

order of integration is 1+



d
^

.  

 
                                                                    

8 ”… any stationary time series may be thought of, approximately, as the random superposition of 

sines and cosines oscillating at various frequencies.” (Shumway and Stoffer, 2006) 
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SECOND STEP - MODELLING LONG MEMORY 

 

The Xt series is then differentiated of the order d, and modelled as an ARMA (p, 

q) process. Since the estimates from the periodogram regression are consistent, 

the estimates in the second step will also be consistent. (Diebold and Rudebusch, 

1989) 

,      (38) 

The above is an ARFIMA model, where (L)=1-1L-…-pLp, (L)=1-1L-…-qLq. All 

roots of (L) and (L) lie outside the unit circle and d is allowed to assume 

values in the real set of numbers. (Diebold and Rudebusch, 1989) 

If the model is transformed we get the following 



X t  (1 L)d A(L)t ,     (39) 

where A(L) is (L)/ (L). (1-L)-d is calculated by using a binomial expansion.9 

 

 

 

 

 

 

 

 

                                                                    

9 For further reading see Diebold and Rudebusch (1989) and Geweke and Porter-Hudak (1983) 

 



(L)(1L)d Xt (L)t



t ~ (0,
2)



t ~ (0,
2)
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DATA 

 

For the purpose of testing the theory, market data for three futures were used. 

From the data, the quoted spread, value and volume for the traded futures as 

well as bid and ask was extracted with a frequency of every 60-second.  The data 

was retrieved from Bloomberg. 

Table 1.* 

Future Underlying asset Nominal contract 

value 

Remaining lifetime 

of the deliverable 

bonds 

Settled 

on 

Euro Bund 

Future 

German government 

debt securities 

100 000 EUR 8 ½ to 10 ½ years Eurex 

Euro Schatz 

Future 

German government 

debt securities 

100 000 EUR 1 ¾ to 2 ¼ years Eurex 

10-Year U.S. 

Treasury 

Note Future 

10-Year U.S. Treasury 

Note 

100 000 USD 6 ½ to 10 years CBOT 

*Source: Bloomberg Database, CME Group and Fixed Income Trading Strategies (Eurex) 

In contrast to Kyle and Obizhaeva, who tested their model for stock data, the 

data used in this paper are for fixed income futures.  The three futures used are 

the Euro Bund Future, Euro Schatz Future and 10-Year U.S. Treasury Note 

Future. Bund and Schatz settle on Eurex and have German government debt 

securities as underlying instrument. The 10-Year U.S. Treasury Note Future 

settle on CBOT10. Trading activity differs between the investigated futures with 

the 10-Year U.S. Treasury Note being the most frequently traded and Schatz the 

least. 

 

                                                                    

10 Chicago Board of Trade 
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Table 2.* 

Future Time period Observations 
Transformed 

observations 

Euro Bund 

Future 

2011-03-16 08:00- 

2011-06-08 12:29 
47 065 1 631 

Euro Schatz 

Future 

2011-03-16 08:00- 

2011-06-0810:29 

41 981 1 629 

10-Year U.S. 

Treasury Note 

Future 

2011-03-16 06:00- 

2011-05-3013:29 

 

63 510 2 349 

*Source: Bloomberg Database 

In order to implement an accurate analysis the dataset was processed before 

included in the regression. An average price of the security was calculated for 

every minute when trading was carried through by dividing the value with the 

volume of the completed trades. From these prices an average price for every 30-

minute period was calculated. Same procedure was conducted for the bid and 

ask prices in order to attain an average bid-ask spread per every 30 minute. This 

was necessary to account for the minutes when no trades were carried through. 

The volatility was computed through the standard deviation of the average 

minute prices for every 30-minute period. Using these prices, trading activity 

(W) for every 30 minute was calculated.  
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EMPIRICS 

 

Kyle and Obizhaeva formulate the spread with the following equation11. 

    (40) 

However, it is not necessary to express this with benchmark values.  By changing 

the benchmark values to the values from the last period the equation will denote 

the change as a function of the change in trading activity.  

    (41) 

By transforming the equation to represent the change instead does not affect the 

fundamental idea behind the theory. If the level of trading activity explains the 

size of the spread against benchmark values, the difference in trading activity 

between two periods can explain the difference in the spread as well. 

By taking the logarithms of equation 41 we get the following expression. 

   (42) 

or 

    (43) 

The integrated process is explained by the difference in trading activity.  

 

 
                                                                    

11 It should be noted that the equation do not specify what happens to the spread when there is 

no trading activity. For Kyle and Obizhaeva this is not a problem in most scenarios because their 

time period is one trading day.  


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DIFFERENCE IN ESTIMATION 

 

Kyle and Obizhaeva approach the empirical modelling in a different manner. 

Instead of testing the spread, they formulate an equation for the total trading 

cost (price impact plus spread cost). They also argue that there are difficulties in 

estimating the predictions. We deviate from this reasoning when modelling the 

spread predictions. For price impact, there are difficulties because a standard 

database does not reveal insight to the single bets. However, for spread 

predictions this is not necessary, changes to the spread does not depend on what 

type of bet it is (short or long position). This insight results in the possibility to 

estimate the spread as above (43) since all variable are in real terms. This 

enables to release the assumption that different assets have the same 

distribution, since we do not estimate cross-sectional dependence. The 

derivatives are though assumed to have the same distribution for all time 

periods. 

  

 

COMBINING WITH LONG MEMORY 

 

If the GPH-test results indicate that the series contains long memory dependence 

it can be modelled as above. 



X t  (1 L)d A(L)t ,    



 t ~ (0, t
2)   (44) 

In this case the X series represents the differentiated logarithm of our spread as 

a fraction of the price volatility.  



(1 L)ln
 t

 t  Pt









 (1 L)d A(L) t

,  



 t ~ (0, t
2)  (45) 
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This states that the first difference can be explained by the fractionally 

differentiated epsilon with an ARMA process.   

If the series contains long memory, the spread will not only be a function of 

changes in the trading activity. Therefore it is necessary to combine equation 43 

with 44. Hence the model we want to estimate will therefore be 



(1 L)ln
 t

 t  Pt









  ln

Wt

Wt1









 (1 L)d A(L) t

, (46) 

This model has the ability to explain the difference in the spread as a function of 

trading activity and the long memory process (low frequency waves).  

If the GPH-test indicates that there is no long memory process in the data, the 

modelling will be conducted without consideration to the long memory part 

(ARIMA) and in line with Kyle and Obizhaeva. 

If the long memory process is modelled it will not affect the conclusion from the 

parameter value of alpha. The reasoning behind this is the following; consider a 

series that contains long memory. Through dividing both sides of equation 44 

with the low frequency waves, a series unaffected by long memory is obtained. 

Thus, the series according to the equation will depend on white noise. However, 

the approach of this paper is that the series does not only depend on itself, it 

depends on the trading activity. This means that the model is misspecified and 

depends on trading activity as well. By modelling as equation 45, the problem of 

misspecification is removed and the alpha will solely represent the effect of the 

trading activity. If modelled without the long memory component, the problem 

of misspecification will be present.   

 



t ~ (0, t
2)
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EMPIRICAL RESULTS 

 

To conclude if the data fits the theoretical value, an empirical study was 

performed. Presented below are the results. Full diagnostics can be found in 

appendix. 

 

 

GPH-TEST 

 

The findings of Groß-Klußmann and Hautsch (2011) suggested that long-

memory processes might be present within our data. Due to the risk of 

misspecification a GPH-test was conducted.12 

Table 3.* 

  



d
^

 
Estimate Std. Error T-stat P-value 



d
^

Bund 
0.007171 0.023101 0.310402 0.7564 



d
^

Schatz 
0.006332 0.028421 0.222794 0.8238 



d
^

US 
-0.010647 0.017109 -0.622313 0.5339 

*Estimation of d 

The results indicate that we cannot reject the null hypothesis of non-stationarity 

(I(1)) for the level series. This implies that the long memory part of the model 

(46) specified above should not be included. 

 

                                                                    

12 Periodograms for the Fourier frequencies used for the GPH-tests are found in appendix 
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AR/MA- PROCESSES 

 

The Autoregressive processes might still occur within the series. A graphical 

analysis is performed on the correlogram13 of the dependant series. All series 

indicates that there exist MA-processes since the autocorrelation function dies 

abruptly after one lag and the partial autocorrelation functions decays slowly. 

The length of the process is decided through the SBIC14 due to its restrictive 

characteristics compared to other information criterions.  

Table 4.* 

SBIC MA(1) MA(2) MA(3) MA(4) 

Bund 0.686113 0.658734 0.643492 Not significant 

Schatz 0.796067 0.775770 0.773056 Not significant 

US 0.518548 Not significant Not significant Not significant 

*Estimation of MA-process 

 

 

ESTIMATION OF ALPHA 

 

When performing diagnostics on our models, heteroskedasticity was found for 

the US series. To account for this, the model where estimated using Newey-West 

(HAC).  

The results for the estimated parameter are to a great extent in line with the 

theoretical values. For the future on the 10-year US Treasury note the coefficient 

                                                                    

13 Correlograms are found in appendix 

14 Schwartz bayesian information criterion 
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coincides with theoretical value of -0.330 with a standard error of 0.007. The 

model on the Euro Bund future gives a fairly close estimate of -0.266 with 

standard error of 0.005. However, the estimate for the Euro Schatz future was -

0.206 with a standard error of 0.005, which does not support the theoretical 

value. For further diagnostics Wald tests15 were performed on all series. The null 

hypothesis that the theoretical values are correct was rejected for the Bund and 

Schatz. For the US future the null hypothesis could not be rejected. For all three 

models, the data fits the model rather accurately with adjusted R2-values of 0.73 

(US), 0.74 (Bund) and 0.69 (Schatz).  

 

 

COMMENTS 

 

Apart from the Schatz series, the theoretical value of a decrease in the spread by 

one-third of one percent when the trading activity increase of one percent is 

accurate for our data. Kyle and Obizhaeva’s findings are somewhat supported in 

this study. They found that the spread decreased somewhat faster when an 

implementation shortfall16 regression was used. Our results indicate the 

opposite for the futures market. Even though the Schatz estimate suggests that 

the spread only decreases with 0.21 percent, this might be due to some 

measurement error. It is noticeable that there might be a relationship between 

the level of trading activity and the response in changes in the bid-ask spread. 

The futures on US treasury notes are the most frequently traded and the Schatz 

futures are the least traded.  

 
                                                                    

15 Results from Wald tests are found in appendix 

16 Shortfall implementation is when the difference between the execution price and the closing 

price the day before is used to calculate changes. 
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CONCLUSION 

 

This paper investigates the theoretical model of Market Microstructure 

Invariance proposed by Kyle and Obizhaeva (2010). The model assumes that 

different levels of trading activity results from difference in the time speed. From 

this assumption, predictions about the bid-ask spread can be derived when 

examining the trading activity. The model state that the bid-ask spread should 

decrease by one-third of one percent when the trading activity increase by one 

percent. 

Groß-Klußmann and Hautsch (2011) found that there exist long memory 

processes within data for the bid-ask spread. This implies dependency between 

observations widely separated in time.  

We tested the model on data for German and US bond futures. Our results from 

the GPH-test for long memory cannot confirm the findings of Groß-Klußmann 

and Hautsch (2011). Because of this, long memory was disregarded in the 

modelling process. However, we found that all series contained MA-processes 

through a graphical analysis of the correlograms. To decide the accurate length 

of those processes, the Schwartz Bayesian information criterion was used. When 

modelled with MA-processes, our results support the theoretical model of 

Market Microstructure Invariance with alpha values of -0.330, -0.266 and -0.206. 

These values differ from the results of Kyle and Obizhaeva. Both are close to the 

theoretical value, however their results imply that the spread decreases 

somewhat faster when the trading activity increases. Our results indicate the 

opposite. This might be due to differences in data and estimation methods. They 

have made estimations on stock data, which is traded more frequently than the 

bond futures we examine. There might be a nonlinear relationship between 

trading activity and the bid-ask spread, which could explain the differences in 

our results. Another explanation might be the difference in estimation. They use 

implementation shortfall regressions to estimate the spread. When 
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implementing the regression they assume that the expected movement is zero. If 

this is estimated during a period that has a trend (bull or bear market for  

example), then the results will be biased. We also apply a MA-process to exclude 

short-term fluctuations.  

Although we disregarded the long memory from our estimations, it might still be 

present. Since we performed a GPH-test on a variable that depended on 

estimated volatility, the results might be biased. 

We have not tested for cross section dependency between the different futures. 

Therefore we cannot draw any conclusion regarding the hypothesis that all 

futures are the same.  

The results indicate that the model is fairly accurate in predicting changes in the 

bid-ask spread. With more research in this field it could be useful for market 

participants when estimating transaction costs and optimising trading strategies. 

At the moment there are problems using this model for forecasting, since the 

volatility and future price has to be estimated. This can be discarded by using 

variables from the last period, but that will most likely lower the power of the 

forecasts.  

Interesting areas for further research are for example: 

 For the purpose of so-called high frequency trading to better calculate 

transaction costs, the theory can be tested on high frequency stock data.  

Although the problem of short-term fluctuations might be more present. 

 Investigate if there is a fixed relationship between the spread, the price 

and the volatility. Such a relationship would improve the models 

forecasting possibilities. 

 Further research regarding long memory processes within spread data. 
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CORRELOGRAM 

 

Bund 
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Schatz 
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US 
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GPH-test 

Future Coefficient Std. Error t-statistic Prob. 

Bund 

C(1): 2.485684 

C(2): 0.007171 

0.042351 

0.023101 

58.69197 

0.310402 

0.0000 

0.7564 

Schatz 

C(1): -1.180172 

C(2): 0.006332 

0.0053949 

0.028421 

-21.87583 

0.222794 

0.0000 

0.8238 

US 

C(1): 2.779227 

C(2): -0.010647 

0.030182 

0.017109 

92.08148 

-0.622313 

0.0000 

0.5339 

 

 

Phillips-Perron-test 

Future Series Adj. t-statistic Prob. 

Bund 

Integrated spread: 

Trading activity: 

-138.7716 

-30.48907 

0.0000 

0.0001 

Schatz 

Integrated spread: 

Trading activity: 

-390.9659 

-31.51051 

0.0000 

0.0000 

US 

Integrated spread: 

Trading activity: 

-251.6166 

-39.72811 

0.0001 

0.0000 
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Breusch-Pagan-Godfrey-test 

Future F-statistic Probability 

Bund 0.011973 Prob.F(1.1567) 0.9129 

Schatz 0.413672 Prob.F(1.1623) 0.5202 

US 6.976483 Prob. F(1.2323) 0.0083 

 

 

 

Breusch-Godfrey-test 

Future F-statistic Probability 

Bund 25.86790  Prob.F(2.1563)0.0000 

Schatz 7.187367 Prob.F(2.1619) 0.0008 

US 1.014797  Prob.F(2.2321)0.3626 

 

 

Output 

Future Coefficient Std. Error t-statistic Prob. Adjusted R-

squared 

Bund -0.266148 0.005453 -48.80912 0.0000 0.739365 

Schatz -0.205074 0.004946 -41.45879 0.0000 0.691097 

US -0.330456 0.007059 -46.87728 0.0000 0.733414 
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Wald-test 

Future t-statistic Degrees of freedom Probability 

Bund 11.70989 1565 0.0000 

Schatz 25.94341 1621 0.0000 

US -0.080031 2323 0.9362 

 

 

 

 


